Bayesian nonparametric inference for random distributions and related functions
نویسندگان
چکیده
In recent years, Bayesian nonparametric inference, both theoretical and computational, has witnessed considerable advances. However, these advances have not received a full critical and comparative analysis of their scope, impact and limitations in statistical modelling; many aspects of the theory and methods remain a mystery to practitioners and many open questions remain. In this paper, we discuss and illustrate the rich modelling and analytic possibilities that are available to the statistician within the Bayesian nonparametric and/or semiparametric framework.
منابع مشابه
Introducing of Dirichlet process prior in the Nonparametric Bayesian models frame work
Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...
متن کاملBayesian Nonparametric and Parametric Inference
This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.
متن کاملA Nonparametric Bayesian Model for Inference in Related Longitudinal Studies
We discuss a method for combining different but related longitudinal studies to improve predictive precision. The motivation is to borrow strength across clinical studies in which the same measurements are collected at different frequencies. Key features of the data are heterogeneous populations and an unbalanced design across three studies of interest. The first two studies (CALGB 8881 and 916...
متن کاملQuantile Pyramids for Bayesian Nonparametrics
Pólya trees fix partitions and use random probabilities in order to construct random probability measures. With quantile pyramids we instead fix probabilities and use random partitions. For nonparametric Bayesian inference we use a prior which supports piecewise linear quantile functions, based on the need to work with a finite set of partitions, yet we show that the limiting version of the pri...
متن کاملLectures on Nonparametric Bayesian Statistics
Notes for the course by Bas Kleijn, Aad van der Vaart, Harry van Zanten (Text partly extracted from a forthcoming book by S. Ghosal and A. van der Vaart) version 4-12-2012 UNDER CONSTRUCTION 1 Introduction Why adopt the nonparametric Bayesian approach for inference? The answer lies in the simultaneous preference for nonparametric modeling and desire to follow a Bayesian procedure. Nonparametric...
متن کامل